- lineare Mannigfaltigkeit
- линейное многообразие
Немецко-русский математический словарь. 2013.
Немецко-русский математический словарь. 2013.
Lineare Mannigfaltigkeit — Der affine Raum nimmt im systematischen Aufbau der Geometrie eine Mittelstellung zwischen Euklidischem Raum und Projektivem Raum ein. Inhaltsverzeichnis 1 Informelle Definitionen 2 Definition der synthetischen Geometrie 3 Definition der linearen… … Deutsch Wikipedia
Lineare Gruppe — Allgemeine lineare Gruppe GL(n,K) berührt die Spezialgebiete Mathematik Gruppentheorie Lie Gruppen Physik Symmetrie Quantenmechanik Eichtheorie Relativitätstheorie Lorentz Gruppe … Deutsch Wikipedia
Generelle lineare Gruppe — Allgemeine lineare Gruppe GL(n,K) berührt die Spezialgebiete Mathematik Gruppentheorie Lie Gruppen Physik Symmetrie Quantenmechanik Eichtheorie Relativitätstheorie Lorentz Gruppe … Deutsch Wikipedia
Projektive lineare Gruppe — Allgemeine lineare Gruppe GL(n,K) berührt die Spezialgebiete Mathematik Gruppentheorie Lie Gruppen Physik Symmetrie Quantenmechanik Eichtheorie Relativitätstheorie Lorentz Gruppe … Deutsch Wikipedia
N-Mannigfaltigkeit — topologische Mannigfaltigkeit berührt die Spezialgebiete Mathematik Topologie Differentialgeometrie Physik Klassische Mechanik Grenzflächen, Membrane Allgemeine Relativitätstheorie … Deutsch Wikipedia
Semi-Riemannsche Mannigfaltigkeit — topologische Mannigfaltigkeit berührt die Spezialgebiete Mathematik Topologie Differentialgeometrie Physik Klassische Mechanik Grenzflächen, Membrane Allgemeine Relativitätstheorie … Deutsch Wikipedia
Topologische Mannigfaltigkeit — berührt die Spezialgebiete Mathematik Topologie Differentialgeometrie Physik Klassische Mechanik Grenzflächen, Membrane Allgemeine Relativitätstheorie … Deutsch Wikipedia
Komplexe Mannigfaltigkeit — Komplexe Mannigfaltigkeiten sind topologische Mannigfaltigkeiten, deren Kartenwechselhomöomorphismen sogar konform sind. Diese Objekte werden in der Differentialgeometrie und der Funktionentheorie untersucht. Ihre Definition ist analog zu der… … Deutsch Wikipedia
Allgemeine lineare Gruppe — Die allgemeine lineare Gruppe GL(n,K) vom Grad n über einem Körper K ist die Gruppe aller regulären Matrizen mit Koeffizienten aus K. Gruppenverknüpfung ist die Matrixmultiplikation. Die Bezeichnung GL kommt von der Abkürzung der englischen… … Deutsch Wikipedia
Affiner Raum — Der affine Raum (gelegentlich auch lineare Mannigfaltigkeit genannt) nimmt im systematischen Aufbau der Geometrie eine Mittelstellung zwischen Euklidischem Raum und Projektivem Raum ein. Der affine Raum im engsten Sinne ist ein mathematisches… … Deutsch Wikipedia
Affine Räume — Der affine Raum nimmt im systematischen Aufbau der Geometrie eine Mittelstellung zwischen Euklidischem Raum und Projektivem Raum ein. Inhaltsverzeichnis 1 Informelle Definitionen 2 Definition der synthetischen Geometrie 3 Definition der linearen… … Deutsch Wikipedia